超聲波技術所具有的聲學特性早已為人們所認識。但是,把超聲波技術運用到工業(yè)測量中,則是近幾年來,隨著微電腦及電子技術的發(fā)展,對超聲波信號發(fā)射、捕捉及處理手段的日益完善才得以實現(xiàn)的。目前,超聲波物位計和超聲波流量計已在山西鋁廠被廣泛使用。 超聲波的聲學特性
超聲波是指頻率超過20kHz的聲波。為了充分認識超聲波流量計,有必要了解超聲波的特性。
(1)聲速特性
超聲波可以在固體、液體和氣體中以不同的速度進行傳播,其速度受介質(zhì)溫度、壓力等因素的影響,但在相同外部環(huán)境下,超聲波在同一介質(zhì)中的傳播速度是一常數(shù)。這是所有超聲儀表進行測量的基礎。
(2)反射特性
超聲波從一種介質(zhì)進入另一種介質(zhì)時,由于兩種介質(zhì)密度不同,因而在兩種介質(zhì)分界面,其方向傳播會發(fā)生改變:其中一部分折射入另一種介質(zhì),另一部分被反射回來。
當超聲波以氣體傳播到固體或液體時,由于兩種介質(zhì)密度相差懸殊,聲波幾乎**被反射,超聲波物位計充分利用了這一特性。
當超聲波以固體傳播到液體(或反過來)時,聲波因為傳播的介質(zhì)密度相近而幾乎**折射,超聲波流量計則利用了這一特性。
(3)衰減特性
超聲波在傳播過程中,由于受介質(zhì)和介質(zhì)中雜質(zhì)的阻礙或吸收,其強度會產(chǎn)生衰減。不論是超聲波流量計還是超聲波物位計,對所接受的聲波強度都有**要求,所以都要對各種衰減進行抑制。
3 超聲波流量計及其應用概況
3.1兩類超聲波流量計
目前應用于工業(yè)測量的超聲波流量計主要有兩類,即多譜勒式超聲波流量計和時差式超聲波流量計。它們都采用了現(xiàn)代高精技術來處理超聲波信號,都應用了超聲波的相關聲學特性,但其工作試驗方法及應用場合等方面仍有很大不同,如表1所示。
3.2兩類超聲波流量計測量試驗方法
表1 為了正確選型和合理使用超聲波流量計,并且對實際應用中出現(xiàn)的問題進行分析、總結和解決,需要了解兩類儀表的工作試驗方法。
(1)多譜勒超聲波流量計
兩個探頭對稱地裝在待測流體管路兩側。
發(fā)射探頭發(fā)射頻率為f1的超聲波信號,經(jīng)過管道內(nèi)液體中的懸浮顆粒或氣泡后,頻率發(fā)生偏移,以f2的頻率反射到接收探頭,這就是多譜勒效應,f2與fl之差即為多譜勒頻移fd。
設流體流速為v,超聲波聲速為c,多譜勒頻移fd正比于流體流速v:
即:fd=f2-f1=×v
所以流體流速:v=×fd
當管道條件、探頭安裝位置、發(fā)射頻率、聲速確定以后,c、f1、θ即為常數(shù),流體流速和多譜勒頻移成正比,通過測量頻移就可得到流體流速,進而求得流體流量。
(2)時差式超聲波流量計
時差式超聲波流量計的兩個探頭裝在待測流體管道的上游和下游,對于小口徑管道,裝在管道一側,為V方式,對于大口徑管道(直徑大于200mm)則裝在兩側,為Z方式,如圖2所示。
圖2
兩個探頭(即換能器)都可以發(fā)射和接收超聲波信號。由于液體流速的作用,從上游側探頭發(fā)向下游的聲速將增加;反之減小。兩者傳播的時間差直接與流體流速成正比,通過對時間差的檢測即可計算出液壓體流速,進而求得流量。
3.3超聲波流量計在山西鋁廠應用概況
目前,山西鋁廠對上述兩類超聲波流量計都有現(xiàn)場使用。根據(jù)實際情況,氧化鋁生產(chǎn)工藝中,料漿、精液、洗液等適合使用多譜勒式超聲波流量計,如拜爾法工藝上溶出洗液的測量就使用了該儀表,而對清水的測量則適合使用時差式超聲波流量計。從使用效果看,前者運行不太穩(wěn)定,效果不太理想,而后者則已達到了令人滿意的結果。
根據(jù)我們分析,一方面,使用多譜勒式超產(chǎn)波流量計所測管道的介質(zhì)多為粘稠、高溫等流體,特性各不相同,而且長期流動導致管壁結垢,影響超聲波的正常穿透和傳播;另一方面,從已掌握的資料看,時差技術比多譜勒技術更成熟、更可靠。
4 超聲波物位計及其應用
超聲波物位計,作為一種成熟的物位測量儀表,可以測量固體、液體的料位,已在山西鋁廠二期生產(chǎn)工藝中廣泛使用。目前,蒸發(fā)、沉降、二期中分等工藝現(xiàn)場大量使用了德國E+H公司生產(chǎn)的超聲波物位計。主要有FMU671、FMU421和FMU231等系列產(chǎn)品,探頭則有DU33、DU42等型號,其具體使用步驟、操作形式各不相同,但它們的基本試驗方法、系統(tǒng)結構、功能及主要處理信號方式卻大體相同。本文**以山西鋁廠8車間沉降槽上使用的FMU421(DU42探頭)為例,來介紹超聲波物位計的現(xiàn)場使用及其相關內(nèi)容。
4.1超聲波物位計的測量試驗方法
超聲波物位計運用了超聲波的聲學特性,即在**條件下超聲波在空氣中的傳播速度是**的,所以通過測量超聲波從探頭傳播至料位表面并返回到探頭所用的時間,來計算探頭到料位的距離,再用槽子的總高減去這個距離即可得實際料位,如圖3所示。
圖3
即: L=H-h=H-CT/2=H-(Co+at)T?2
其中: H為零料位到探頭的距離,m;
h為料位表面到探頭的距離,m;
T為時間,s;
C。為0℃時超聲波在空氣中的傳播速度,m?s;
α為超聲波速度的溫度系數(shù),m?℃;
t為溫度度,℃。
超聲波物位計的核心部件是測量探頭、微處理器,信號的發(fā)送、接收和處理就是通過這兩者來完成的。
4.2超聲波物位計的應用概況
在現(xiàn)場實際運用超聲波物位計時,會有各種因素對其穩(wěn)定、可靠的測量產(chǎn)生影響,下面我們將結合實際,講述各種干擾對超聲波物位計選用、使用、安裝的影響。
(1)介質(zhì)及環(huán)境溫度的影響
超聲波從物料表面反射時,其反射頻率會受到物料溫度的影響而發(fā)生變化,為了補償這一變化,超聲波探頭內(nèi)裝有溫度傳感器,當探頭向處理器發(fā)送反射信號的同時,也把溫度信號送到微處理器,處理器將自動補償由于溫度對料位測量的影響。
此外,為了保證探頭的可靠工作,要求環(huán)境溫度不超過60℃。
(2)攪拌器對物位計測量的影響
如果物料容器內(nèi)裝攪拌器,它同樣會反射超聲波信號,造成假反射回波,并被傳送到微處理器。微處理器將根據(jù)統(tǒng)計學試驗方法處理真假面具回波,所以要求超聲波從物料表面反射的回波應至少為從攪拌器臂反射的回波的3倍。適當降低攪拌器的轉速,或?qū)⑻筋^偏離攪拌**,都可以有效**攪拌器產(chǎn)生的假面反射對料位測量的影響。
(3)超聲波物位計測量料位的極限值
1)*高料位
當一束超聲波脈沖向物料表面?zhèn)魉瓦^程中,若收到從物料表面來的反射波,將無法進行測量,這段距離就是盲區(qū)。物料*高料位不得高于盲區(qū)。
2)*低料位
*低料位也就是使超聲波能到達的距離傳感器的*遠距離,并且使反射回波能被傳感器接收。由于超聲波在傳播過程中的衰減以及物料表面對聲波的吸收,這一傳播距離對物料性質(zhì)依賴性很強,對于DU33來說,可測液體范圍為25m,固體范圍為15m。
總之,只要儀表選型、安裝適當,超聲波物位計的應用效果還是比較滿意的。
電磁流量計工作試驗方法介紹電磁流量計的工作試驗方法是基于法拉第電磁感應定律。
在電磁流量計中,測量管內(nèi)的導電介質(zhì)相當于法 拉第試驗中的導電金屬桿,上下兩端的兩個電磁線圈產(chǎn)生恒定磁場。
當有導電介質(zhì)流過時,則會產(chǎn)生感應電壓。管道內(nèi)部的兩個電極測量產(chǎn)生的感應電壓。
測量管道通過不導電的內(nèi)襯(橡膠,特氟隆等)實現(xiàn)與流體和測量電極的電磁隔離。
測量試驗方法
根據(jù)法拉第電磁感應定律,在磁感應強度為B的均勻磁場中,垂直于磁場方向放一個內(nèi)徑為D的不導磁管道;
當導電液體在管道中以流速v流動時,導電流體就切割磁力線。如果在管道截面上垂直于磁場的直徑兩端安裝一對電極則可以證明;
只要管道內(nèi)流速分布為軸對稱分布,兩電極之間產(chǎn)生感生電動勢:
e=KBDv (3-36)
式中,v為管道截面上的平均流速,k為儀表常數(shù)。
由此可得管道的體積流量為:
qv= πeD/4KB (3-37)
由上式可見,體積流量qv與感應電動勢e和測量管內(nèi)徑D成線性關系,與磁場的磁感應強度B成反比,與其它物理參數(shù)無關.這就是電磁流量計的測量試驗方法。
需要說明的是,要使式(3—37)嚴格成立,必須使電磁流量計測量條件滿足下列假定:
①磁場是均勻分布的恒定磁場;
②被測流體的流速軸對稱分布;
③被測液體是非磁性的;
④被測液體的電導率均勻且各向同性。